Главная » CADmaster №4(24) 2004 » Архитектура и строительство Технологии построения расчетных моделей и анализа результатов в системе SCAD Office. Модели металлокаркасов
В настоящее время достаточно остро ощущается недостаток в литературе, посвященной практическим приемам построения расчетных моделей с использованием метода конечных элементов и, соответственно, использованию программных продуктов, реализующих этот метод. С другой стороны, развитие и внедрение средств автоматизации проектирования (в том числе расчетов) с неизбежностью приводит к появлению новых — зачастую оригинальных и неожиданных — подходов к решению, казалось бы, стандартных и давно всем известных задач. Надеемся, эта статья станет далеко не последней в серии материалов, посвященных практическим приемам и технологиям построения расчетных моделей и анализа результатов в среде программного комплекса SCAD Office. Приглашаем к разговору инженеров-практиков, использующих систему SCAD и желающих поделиться или обменяться опытом.
В этой статье мы рассмотрим подходы к построению расчетных моделей металлокаркасов на примере цеха непрерывной разливки стали. Не вдаваясь глубоко в конструктивные подробности, приведем основные характеристики здания:
- Здание двухпролетное (25+31,5)х94 м.
- Высота до низа несущих конструкций покрытия — 38,5 м.
- Высота по коньку фонаря — 47,6 м.
- Крановое оборудование — подвесные краны грузоподъемностью 10 тонн и мостовые краны грузоподъемностью 125 и 400 тонн.
- Часть каркаса здания ниже подкрановых балок состоит из двухветвевых колонн.
- Подкрановые балки коробчатого сечения.
- На подкрановые балки опираются продольные фермы, к которым присоединяются поперечные фермы.
Общие виды расчетной модели здания в различных проекциях (в том числе и с отображением сечений элементов) представлены на рис. 1.
Рассмотрим краткое описание расчетной модели, а затем более подробно остановимся на способах моделирования и расчета двухветвевой колонны.
Модель содержит 11298 узлов, 13701 элемент, 65718 неизвестных и 69 загружений. Время полного (статика, РСУ, комбинации, эквивалентные напряжения) расчета мультифронтальным методом на компьютере c процессором Pentium IV, 1,8 ГГц и 744 Мб ОЗУ составляет 21,35 мин., при этом выбор РСУ в системе SCAD осуществляется всего за 8 мин., что, на наш взгляд, очень быстро и говорит о продуманности алгоритмов, а также корректности их программной реализации, учитывая достаточно большое количество загружений. Предвидя вопросы о целесообразности построения пространственных моделей производственных зданий, отметим следующее:
- Указанная модель строилась поэтапно сверху вниз. Вначале была построена и рассчитана модель поперечной фермы покрытия, затем модель поперечной рамы и лишь после этого строилась модель всего здания.
- Пространственные модели зданий из металлокаркасов имеет смысл применять только при наличии в таком здании кранового оборудования. Модель позволяет учитывать включение в работу всего здания при воздействии тормозных нагрузок (кстати, об этом говорится во многих книгах, посвященных расчетам и проектированию металлических конструкций). На рис. 2 представлена картина деформированного состояния при воздействии тормозной крановой нагрузки на поперечную раму по оси 6 (отчетливо видно включение в работу всего каркаса здания за счет связей по покрытию и жесткости подкрановых балок).
- При отсутствии крановых нагрузок и воздействии в поперечном направлении только ветровой нагрузки все рамы работают одинаково. Это позволяет ограничиться расчетом серии плоских моделей, отдельно рядовой рамы, рамы фахверка и связевого блока в продольном направлении.
Все несущие конструкции, кроме подкрановых балок, смоделированы стержневыми элементами 5-го типа (пространственные стержни), а решетка колонн — элементами 4-го типа (стержни пространственных ферм). Подкрановые балки смоделированы оболочечными элементами 44-го типа, что позволяет учесть реальные размеры подкрановой балки сечением 2×3 метра из листовой стали толщиной 30 мм. Зона стыка подкрановой балки с колонной показана на рис. 3.
Следует заметить, что в данном случае такой подход оказывается наиболее эффективным, поскольку позволяет напрямую анализировать напряжения в оболочках, используя различные теории прочности. Возможность вывода напряжений в MS Excel обеспечивает очень быстрый поиск наиболее нагруженных элементов. Полученная с помощью SCAD цветографическая картина распределения нормальных напряжений в подкрановой балке представлена на рис. 4. Классический для строителей подход — моделирование стержнями — вызывает затруднения как при построении расчетной модели, адекватной реальности, так и при анализе результатов: к напряжениям приходится переходить «вручную», через M, N, Q, что не только неудобно, но и сопряжено с риском совершения ошибок. Несколько отступая от рассматриваемой модели, отметим также, что использование оболочечных элементов позволяет с помощью модуля устойчивости, реализованного в системе SCAD, решать задачи потери устойчивости плоской формы изгиба сечений любой формы. Подобный расчет через формулы СНиП практически невозможен ввиду отсутствия данных по коэффициенту φb.
Перейдем к рассмотрению модели двухветвевой колонны поперечной рамы, изображенной на рис. 5, и возможностям ее расчета с помощью системы SCAD.
Прежде чем выбрать способ построения расчетной модели в SCAD, необходимо определиться со следующими вопросами:
- Какие виды проверок следует выполнить при расчете того или иного элемента конструкции?
- Какие виды проверок могут быть автоматически реализованы в системе SCAD 1?
- Какие виды проверок придется выполнять «вручную» или с помощью программ, работающих по принципу инженерного калькулятора (например, «Кристалл»), и какие для этого понадобятся исходные данные?
Только получив ответ на все эти вопросы, следует приступать к построению расчетной модели или серии моделей, каждая из которых учитывает особенности рассчитываемого элемента конструкции.
Сначала подробнее рассмотрим устройство модели двухветвевой колонны, а затем покажем, какие виды проверок эта модель закрывает автоматически, и проведем сравнение с классическим подходом, представленным во всех учебниках по металлоконструкциям. На рис. 6 показан фрагмент модели с отображением типов конечных элементов, закреплений и объединений перемещений в узлах (к сожалению, рамки журнальной статьи не позволяют рассмотреть порядок построения такой модели).
Модель устроена следующим образом:
- Колонна смоделирована не в виде одного стержня, а так, как она выглядит в реальности: в виде двух ветвей и решетки.
- Ветви колонны смоделированы стержневыми элементами 5-го типа с расстоянием между ними, равным расстоянию между центрами тяжести ветвей (2,5 м). При этом обе ветви представлены в виде сварных двутавров, заданных параметрическим способом назначения жесткостных характеристик. В реальности внешняя ветвь имеет сечение швеллера, но ее пришлось задавать эквивалентным по площади двутавром, поскольку в системе не реализована автоматическая проверка прочности параметрически заданных швеллеров.
- Решетка смоделирована стержневыми элементами 4-го типа (элементы пространственной фермы). При этом наличие в узлах элементов 4-го типа только поступательных степеней свободы автоматически обеспечивает шарнирное присоединение элементов решетки к элементам ветвей. Следует отметить, что для моделирования решетки вполне возможно использовать и элементы 5-го типа, но при этом придется задавать шарниры в узлах элементов решетки.
- Из соображений наглядности построения и визуализации модели элементы решетки разнесены от элементов ветвей на некоторое условное расстояние, принятое в данной модели равным фактическому расстоянию от оси колонны до оси решетки. Для обеспечения совместности деформаций узлы решетки объединены в группы объединения перемещений по поступательным степеням свободы. Решетка выполнена из уголка, заданного в расчетной модели путем выбора из сортамента металлопроката.
- В модели, использованной для расчета на прочность и устойчивость, нижние узлы ветвей и решетки закреплены по всем направлениям.
- Для расчета нагрузок на фундаменты в виде М, N, Q от всей колонны приходится использовать еще одну модель, в которой добавляются два горизонтальных элемента (на рис. 7 это элементы
№ 13723 и 13724) и один вертикальный (элемент№ 13729 на рис. 7), расположенный строго по центру тяжести всей колонны с жесткостью заведомо большей, чем жесткость колонны. Среди инженеров, использующих такой подход при моделировании двухветвевых колонн, этот вертикальный элемент получил название «пенёк».
В таблице 1 представлен требуемый перечень проверок для двухветвевой колонны и сопоставлена степень автоматизации работ при подходе к моделированию, описанном в этой статье, и при классическом подходе к построению модели в виде стержня с приведенными жесткостными характеристиками. Сравниваемые модели показаны на рис. 8.
Таблица: Сравнение степени автоматизации при различных способах построения расчетных моделей
Вид работ или проверки | Степень автоматизации расчета при использовании модели |
Степень автоматизации расчета при использовании модели |
|
---|---|---|---|
1 | Задание жесткостных характеристик элементов | Полная автоматизация путем выбора сечения из каталога металлопроката или задания с помощью параметрических сечений | Расчет приведенных жесткостных характеристик «вручную» или с помощью конструктора сечений, с последующим их численным заданием |
2 | Проверка по деформациям | Полная автоматизация | Полная автоматизация |
3 | Проверка прочности, устойчивости ветвей между узлами решетки и устойчивости всей колонны из плоскости изгиба | Полная автоматизация | Получение РСУ в виде M, N, Q c последующей «ручной» проверкой прочности и устойчивости |
4 | Проверка прочности и устойчивости элементов решетки от действующих нагрузок | Полная автоматизация | Получение РСУ в виде M, N, Q c последующим «ручным» расчетом усилий в элементах решетки и «ручной» проверкой их прочности и устойчивости |
5 | Проверка предельной гибкости ветвей и элементов решетки | Полная автоматизация | Полностью «ручной» расчет или расчет с использованием программы «Кристалл» |
6 | Проверка прочности решетки на Qfic в соответствии с п. 5.8 СНиП II-23−81* | Полностью «ручной» расчет | Полностью «ручной» расчет |
7 | Проверка общей устойчивости двухветвевой колонны в плоскости изгиба как целого стержня | Полностью «ручной» расчет по значениям РСУ, полученным при расчете нагрузок на фундаменты, и расчетной длине, рассчитанной по СНиП | Полностью «ручной» расчет по значениям РСУ и расчетной длине, рассчитанной по СНиП |
Вывод напрашивается сам собой. При грамотном подходе к разработке технологий создания расчетных моделей в системе SCAD возможно существенное сокращение сроков выполнения расчетов и повышение их достоверности. Под грамотным подходом здесь следует понимать более полное и продуманное использование возможностей, предоставляемых программным комплексом…
Мы почти ничего не сказали об интеграции системы в общий процесс проектирования и взаимодействии SCAD с другими системами (в первую очередь — с программами геометрического моделирования). Эта проблема, на наш взгляд, очень актуальна и вполне может стать темой одной из следующих статей.
- Для этого нужно внимательно ознакомиться с главой 17 Руководства пользователя, где четко прописан набор проверок по СНиП II-23−81*, реализуемых в модуле проверки несущей способности стальных сечений. ↑
ведущий конструктор
инжинирингового центра
ЗАО «Группа компаний
„Электрощит-ТМ-Самара“»
E-mail: ATeplih@electroshield.ru
Тел.: (8462) 76−8831
Анатолий Маляренко,
директор ООО «СКАД СОФТ»
E-mail: scad-soft@mtu-net.ru
Тел.: (495) 267−4076
Скачать статью в формате PDF — 296.6 Кбайт |